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The last year in observations
o What do we need to do the best astrophysics

Challenges in Bayesian inference
Parallel nested sampling
Reduced order models

Looking to O4 and beyond

o Rapid sky localization



Observations in 03



The last couple of years have been interesting...
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Astronomy with gravitational-wave transients

Coalescing compact binaries _ Honford _

_ Livingston

e Precise measurements of black hole
spins

e Unambiguous measurement of
asymmetric mass ratios

e Evidence for higher-order
gravitational-wave modes

e Population properties and formation

scenarios
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Extracting this information pushes the limits of our data analysis methods



What we need to do astronomy in O4 and beyond

e Compact binary waveform models with:

Higher order mode content

Precession

Calibration to NR (NR surrogates)

High mass ratios

Eccentricity (important for future BBH observations)
Tidal disruption (for future NSBH merger observations)

e Inference tools that can use the best, cutting edge models

o O O O O O



What we need to do astronomy in O4 and beyond

e GW Astronomy requires scalable inference algorithms and accurate models models to keep

up with event rate Cumulative Count of Events and (non-retracted) Alerts

01 =3, 02 =8, O3a =33, O3b =23, Total =67
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Bayesian inference



Bayesian inference

Parameter estimation and hypothesis testing in a unified framework

p(0ld. H) = w(O|H)L(d|0, H)

‘/ Z(d|H)

</Unknown source parameters, e.g., masses & spins
e Experimental data

<—>o Hypothesis/model of the data




Bayesian inference

Parameter estimation and hypothesis testing in a unified framework

m(01H)L(d]0, H)
p(0|d,H) = (d\H)

I/ Prior: probablllty of the parameters before

e Posterior: Probability of analyzing the data

parameters after
analyzing data < e Likelihood: probability of the data given

parameters and an hypothesis

~.® Evidence: Probability of the data given the
hypothesis (marginalized over all parameters)




Bayesian inference: parameter estimation

p(0|d, H) example: 1D & 2D projection of the full (17+)D probability distribution

Table 1. Source Properties of GW190814: We Report the Median Values Along with the
Symmetric 90% Credible Intervals for the SEOBNRv4aPHM (EOBNR PHM) and
IMRPHENOMPV3HM (PHENOM PHM) Waveform Models

2.8
2.7 EOBNR PHM Phenom PHM Combined
z.0
2.6 Primary mass m1/M, 23249 23211 2321}
25 Secondary mass my/M, 2.50+008 258099 2.59+008
552'4 Combined PHM HansiAted 0Nz onrHR  0.112:30%
- ompine

231 —— EOBNR PHM [ Chirp mass M/M 6.10: 9% 6.08*008 6.09°006
991 —— Phenom PHM p )
———. Abbott+ 2018 M \ Total mass M/M,, 25.8103 258113 25.8%4%
Y max |
2:1 .. \
—— Farr+Chatziioannou 2020 M.« \ Final mass My/Mo 256719 25.5°13 25.6+11
2.0, L
20 21 22 23 24 25 26 27
Upper bound on primary spin magnitude 0.06 0.08 0.07
m[Mo)] PP primary spin mag X1

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, ApJL (2020)



Bayesian inference: hypothesis testing

Hypothesis testing encoded in the Bayesian “evidence” Z (d | H)

e Allows for data-driven hypothesis testing, e.g.,
o “How much more likely is it that GW190814 was described by a signal containing higher order
modes than a signal without higher order modes?”
o This would be expressed in a Bayesian way using a Bayes factor:

Z (d|Hq)

b= 7 (d|Hs)




Challenges



Challenges in Bayesian inference

Expensive models

Computing PDFs and
evidences requires
comparing signal models
to data
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Challenges in Bayesian inference

. Hanford, Washington (H1) Livingston, Louisiana (L1)
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Challenges in Bayesian inference
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Challenges in Bayesian inference

“Curse of dimensionality”

e Astrophysical parameter spaces are 15D (binary black holes) and 17D (binary
neutron stars)
e Additional 20 parameters per GW detector that encode uncertainty about detector

calibration
o Between 50-70 parameters that have to be inferred simultaneously



Challenges in Bayesian inference

Big data. Sort of...
In practice, often use stochastic samplers to explore parameter spaces

% Nested sampling and MCMC

e Roughly 100Tb-1Pb of data generated and analyzed per event to produce

parameter estimates
o Model space much much MUCH bigger than the strain data

e Population inference takes as input millions of posterior samples



Main costs

1. Template waveform generation is expensive

2. Large number of likelihood(waveform) calls These problems compound
o Around 50-100M per analysis

Some solutions

e Parallel sampling methods :
o Reduce the wall time of inference by producing more samples per s, but overall CPU time is
roughly conserved (and high)
e Reduced order models:

o Reduce overall CPU time by making likelihood(waveform) evaluations cheaper
o Can be stand ins (surrogates) for full Numerical Relativity

(’'m only going to focus on classical sampling methods, i.e., no machine learning, which is also interesting for astrophyiscal inference)



Parallel nested sampling



Parallel nested sampling

For O3, we needed a method that was

e Accurate
o Don’t cut corners or make approximations (if you can avoid it)
e Flexible

o Use all of the best signal models to analyze each event! Update models when new ones
become available
o Useful for wide range of problems, not just for CBCs
e Scalable
o  Should handle a growing amount of work by throwing more CPUs/GPUs at it



Nested sampling

e Designed for high-dimensional integration of the Bayesian evidence (Skilling
2006):

Z(dH)= | don(0|H)L(d|0,H)

In our case, this is integral is around 50-70 dimensional

As a byproduct, nested sampling produces posterior samples

o Accomplishes both tasks of inference



Nested sampling

The “trick” of nested sampling is to replace a high-D integral with a 1D integral:

1
| Z(dH)|= / X L(d|X, H)
a4 0

Ly
L
Area under the curve
'@ EEPH
Parameter space o X, X, X, 1

Figure 3: Nested likelihood contours are sorted to enclosed prior mass X. Skilling 2006 (Nested sampling for
general Bayesian computation)



Nested sampling

Algorithmically, we:

0. Initialize: draw M samples (“live
points”) from the prior and rank them
from highest to lowest likelihood

1. Draw a sample from the prior

a. Accept if the likelihood is greater than
the lowest live point
b. Otherwise, repeat

2. Replace lowest-likelihood live
point with new sample

3. Estimate evidence

4. Repeat until change in evidence
is below some threshold

L, L
2
Ll
L
- ) e
Parameter space 0o X5 X, X,

Figure 3: Nested likelihood contours are sorted to enclosed prior mass X.




Nested sampling

1.

Draw a sample from the prior

a.

b.

Accept if the likelihood is greater
than the lowest live point
Otherwise, repeat

We know the prior (by definition) a priori so we can draw N
samples simultaneously on each iteration

Provides a theoretical speedup of
S = Mlive In (1 + Ncores/Mlive)

Not perfect scaling: probability of accepting samples < 1

Smith et al 2020, Handley et al 2015



Main results

e Scales well up to around 800
cores

e Implemented within the
parallel bilby (pBilby) library.

e Uses the dynesty nested
sampler parallelized with
mpldpy

o Production code in the
LVC since around March
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Smith et al MNRAS Vol. 498 Issue 3 (2020)


https://git.ligo.org/lscsoft/parallel_bilby/

Main results

IMRPhenomPv3HM SEOBNRv4PHM IMRPhenomPv2NRT

Number of CPUs 16 64 640 16 64 640 16 64 640

GW150914 39d 233hr 28hr 837d 21.2d 25d - - -
GW190425 - - - — — — 30.7d 7.8d 22hr
GW190412 60.3d 153d 18d 29yr 276.1d 11.53d — — —

Table 1. Wall times for selected events using rncores = (16, 64, 640) CPUs. Measured wall times are non-italicized and estimated wall times are italicized.

e Submission of our paper was before publication of GW190814
o  Similar scalings and run times for SEOBNRv4PHM

Smith et al MNRAS Vol. 498 Issue 3 (2020)



Use in the LVC
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Reduced order models
(ROMSs)



Reduced order models

e Directly address the overall cost of inference (reduce CPU time)
o Can be “surrogate” models for full numerical relativity simulations
o ...or faster-to-evaluate versions of approximate waveform models
o Important for keeping up with event rate in O4+
o Can enable fast and optimal sky localization for electromagnetic follow up



Reduced order models: what are they?

Represent the waveform as a weighted sum of basis elements

Usually, the basis set is sparse, i.e., only need a small number of elements

Frequency domain: h(f;6) Zh (F;;0)B

Time domain: h(t;0) Z h (T;;0)B;(t)

SN

basis set via Greedy
algorithm (judiciously
chosen templates)

“Empirical interpolation”
nodes (using EIM greedy
algorithm)

Field et al Phys. Rev. X 4, 031006 (2014)



Reduced order models: what are they?
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Reduced order models: why are they useful?

e Only need to compute waveform at nodes

o Reduces overall CPU time when templates are dominant cost of an analysis

o  Compress large inner products that appear in the likelihood function (reduced order
quadrature -- ROQ)

M{n(}I{/IZg,x Waveform duration T|Af (Hz) mn(ﬁgi Lini?sguitziiatic Speedup
20 1024 1.5s<T <4s 1/4 |12.3 23 | 300 197 8

20 1024 3s<T <8s 1/8 7.9 14.8| 388 278 12

20 2048 6s < T < 16s 1/16 |52 9.5| 360 233 54
20 2048 12s < T < 32s 1/32 |34 62| 524 254 83

20 2048 23.8s<T < 64s 1/64 |22 42| 749 270 127
20 4096| 47.5s <T < 128s 1/128 | 1.4 2.6 | 1253 487 300

Speedup = |:(fhigh - flow)/Af} /(Nbases)

Smith et al Phys. Rev. D 94, 044031 (2016)



Reduced order models: why are they useful?

e Useful representation for numerical relativity surrogates — helps inference by
allowing us to use stand ins for full NR
e Extremely accurate (as measured by the mismatch)

300- B ROM error
200 -
100 1
0- 10-14 10-13 10-12

Waveform mismatch

More details in, e.g., Smith et al Phys. Rev. D 94, 044031 (2016), Canizares et al Phys. Rev. Lett. 114, 071104



Reduced order models: why are they useful?

Why they will be useful in O4+

e Need ROMs/Surrogates with as much physics as possible
o Expect to get more exceptional events as observations continue
m  Non-zero eccentricity?
m  More higher order mode content — better tests of GR
m  Asymmetric mass ratios

e Fast and optimal Bayesian sky localization



Fast sky localization

After a few seconds (BAYESTAR) After a few hours (bilby)

event ID: G330561 50% area: 1378 deg?
50% area: 2806 deg? 90% area: 7461 deg?
90% area: 10183 deg?

In general, full inference can reduce sky uncertainty by
GW190425 factors of a few, to factors of ten or more



Fast sky localization

e Morisaki & Raymond (2019) demonstrated that extremely compact ROMs can
be build for binary neutron star mergers

e They demonstrated full Bayesian localization on the order of tens of minutes
(around 30-60 mins)

60° 60°

10.minutss after detection
30° 0°

Morisaki & Raymond Phys. Rev. D 102, 104020 (2020)



Fast sky localization

Morisaki & Raymond (2019) demonstrated that extremely compact ROMs can
be build for binary neutron star mergers
They demonstrated full Bayesian localization on the order of tens of minutes

(around 30-60 mins)

60° 60°

10.minutss after detection

Combining ROMs with parallel nested o
sampling (pbilby) can reduce this time
to only a couple of minutes 24

-60° -60°

Morisaki & Raymond Phys. Rev. D 102, 104020 (2020)



Reduced order models + parallel sampling

“ Sampling time (minutes)

64 2.2
16 8.6
8 16.9
2 43.4
1 83.7

Morisaki & Smith (in prep)



Summary

Parallel nested sampling and ROMs are practical and readily available methods
for performing inference on GWSs, incorporating detailed physics of BBHs, BNSs
and mixed binaries

% Bilby and Parallel Bilby tutorial on Thurs
> https://qit.ligo.org/lscsoft/parallel_bilby
> https://qit.ligo.org/lscsoft/bilby

Should be useful to anyone interested in using bleeding edge
waveform/population models for precision astrophysics

Scalable tools for inference will be crucial going forward as event rate increases

e This is an active area of research in and out of the LSC: lots of room to contribute!


https://git.ligo.org/lscsoft/parallel_bilby
https://git.ligo.org/lscsoft/bilby

